Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Ji-Zhong Yan, Jian Li and Guo-Wu Rao*

College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, People's Republic of China

Correspondence e-mail: rgw@zjut.edu.cn

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.039$
$w R$ factor $=0.112$
Data-to-parameter ratio $=10.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography All rights reserved

3a,5b-Dimethyl-2,3,3a,4,5,5a,5b,6,7,13,13a,13b-dodecahydro-1H-8-azacyclopenta[a]chrysen-3-ol

The title compound, $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}$, is built up from five fused rings, four of which are six-membered and one five-membered. The ring adjacent to the five-membered ring adopts a chair conformation.

Comment

Testosterone derivatives have a high biological activity and have been widely used in the preparation of hormone-based drugs (Alvarez-Ginarte et al., 2005). As part of our continuing interest in the structure-activity relationship of testosterone derivatives, we have isolated the product, (I), from the reaction of propargylamine and 17-hydroxy-10,13-dimethyl-1,7,8,10,11,12,13,15,16,17-decahydro-2H-cyclopenta[a]phen-anthren-3(4H,9H,14H)-one.

(I)

The molecular structure of (I) is illustrated in Fig. 1. It is built up from five fused rings, four of which are six-membered and one five-membered. The C4/C5/C17-C20 ring fused with the five-membered ring adopts a chair conformation (Cremer \& Pople, 1975). The other rings have no obvious conformations. There is an $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen-bond interaction, building a zigzag chain parallel to the a axis (Table 1 and Fig. 2).

Experimental

The title compound was prepared according to the procedure of Yan et al. (2006). Crystals were obtained by slow evaporation of a methanol solution at room temperature.

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{NO}$
$M_{r}=323.46$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=8.629$ (2) \AA
$b=13.664$ (5) A
$c=15.158$ (4) \AA
$V=1787.2(9) \AA^{3}$

Data collection

[^0]
$Z=4$

$D_{x}=1.202 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=0.07 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Chunk, colorless
$0.39 \times 0.28 \times 0.19 \mathrm{~mm}$

2326 independent reflections
1958 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.031$
$\theta_{\text {max }}=27.5^{\circ}$

Received 1 June 2006
Accepted 8 June 2006

Figure 1
The structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Refinement

Refinement on F^{2}

$$
R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039
$$

$w R\left(F^{2}\right)=0.113$
$S=1.07$
2326 reflections
218 parameters
H -atom parameters constrained
Extinction correction: SHELXL97
Extinction coefficient: 0.0045 (18)

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 $\cdots \mathrm{N} 1^{\mathrm{i}}$	0.82	2.04	$2.862(2)$	178
Symmetry code: (i) $-x+\frac{1}{2},-y+1, z+\frac{1}{2}$				

H atoms were included in calculated positions and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2$ (or 1.5 for methyl H atoms) times $U_{\text {eq }}(\mathrm{C}) . \mathrm{C}-\mathrm{H}$ distances were constrained to $0.96 \AA$ for methyl H atoms, $0.97 \AA$ for methylene H atoms, $0.98 \AA$ for methine H atoms, and $0.93 \AA$ for the remainder, and $\mathrm{O}-\mathrm{H}=0.82 \AA$. In the absence of significant anomalous scattering, Friedel pairs were averaged, and the absolute configuration assigned arbitrarily.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.074 P)^{2}\right. \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.17 \mathrm{e} \mathrm{~A}^{-3} \\
& \Delta \rho_{\text {min }}=-0.14 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 2
View showing the $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding (dashed lines) and the formation of the zigzag chain. For clarity, only H atoms involved in hydrogen bonding are shown. [Symmetry code: (i) $-x+\frac{1}{2},-y+1,+z+\frac{1}{2}$.]
(Version 1.05; Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We are grateful to Professor Jian-Ming Gu of the Center of Analysis \& Measurement of Zhejiang University for help with the X-ray diffraction experiment.

References

Alvarez-Ginarte, Y. M., Crespo, R., Montero-Cabrera, L. A., Ruiz-Garcia, J. A., Ponce, Y. M., Santana, R., Pardillo-Fontdevila, E. \& Alonso-Becerra, E. (2005). QSAR Combin. Sci. 24, 218-226.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2004). CrystalStructure. Version 3.6.0. Rigaku/MSC, The Woodlands, Texas, USA.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Yan, J.-Z., Li, J. \& Rao, G.-W. (2006). Acta Cryst. E62, o2773-o2774.

[^0]: Rigaku R-AXIS RAPID
 diffractometer
 ω scans
 Absorption correction: none
 17581 measured reflections

